

PRO FODTBALL HALL IF FAME YOUTH AND EDURATION

LE5SIN	RIMMIN RIRE STANDARIS	PALES
Attendance is Booming	MD	MA 1
Be an NFL Statistician	MD	MA 4
Buying \& Selling at the Concession Stand	NOBT	MA 5
Driving the Field With Data	MD	MA 6
Finding Your Team's Bearings	GEO	MA 7
Hall of Fame Shapes	GEO	MA 8
Jersey Number Math	NOBT	MA 9-10
Math Football	NOBT	MA 11
How Far is 300 Yards?	MD	MA 12-13
Number Patterns	NOBT, MD	MA 14-15
Punt, Pass and Snap	NOBT, MD	MA 16
Running to the Hall of Fame	NOBT, MD	MA 17
Same Data Different Graph	MD	MA 18-19
Stadium Design	GEO	MA 20
Surveying The Field	MD	MA 21
Using Variables with NFL Scorers	OAT	MA 22-24
What's In a Number?	OAT	MA 25-26
Tackling Football Math	OAT, NOBT, MD	MA 27-36
Stats with Randy Moss	MD	MA 37-38
NFL Wide Receiver Math	MD	MA 39-40
NFL Scoring System	OAT	MA 41-42
Tom Benson HOF Stadium Geometry	GEO	MA 43-44
Miscellaneous Math Activities		MA 45
Answer Keys		MA 46-48

NAITHMITH
 Attendance Is Booming

Goals/Objectives:

Students will:

- Review front end estimation and rounding.
- Review how to make a line graph.

Common Core Standards: Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- The teacher can begin a discussion asking the students if they have ever been to an NFL game or if they know anyone who has gone to one. Discuss the positives of attending an NFL game (i.e the excitement of the crowd).
- As a class, the teacher will use the board to show samples of how to round. Depending on the students' abilities, the students can round to the nearest tenth, hundredth, thousandth, etc.
- Once the teacher feels secure that the students can round numbers, the teacher will introduce front-end estimation. Examples: $17,000=20,000 ; 22,000=20,000 ; 45.16=50$
- Depending upon ability, students will do the worksheet independently, with a partner, or as a whole class. It can also be revised for older students to estimate the number of tickets sold, for example, in 1990 and 1989. It can also be adjusted to do subtraction problems, such as to compute how many more tickets were sold in one year than in another. Once they have their answers they need to decide whether or not it makes sense.
- Students can also find the landmarks of the data: median, mode, maximum and range.
- Once the chart is completed, the students will take this information and use it to create a line graph. If students are unfamiliar with line graphs, it can be done as a class on the overhead. If you choose, you can assign different groups a type of graph to complete and the students can judge which one best shows the data. Some examples could be a bar graph or scatter plot.

Materials:

- Estimation worksheet
- Line graph worksheet
- Smartboard, Chalk, or Dry Erase Board
- Pencils

Assessment:

- Teacher Observation
- Worksheets

Directions: Use the following numbers that tell the average number of people who purchased tickets to NFL games during the regular season. Round the number and then use front-end estimation. (Compiled from 2022 NFL Record and Fact Book)

Year	Average Attendance	Rounding	Front End Estimation
2021	63,770		
2019	66,543		
2018	64,173		
2017	64,156		
2016	66,725		
2015	65,524		
2014	65,386		
2013	65,772		
2012	65,074		
2011	64,698		
2010	64,978		
2009	65,043		
2008	66,625		
2007	66,836		
2006	66,666		
2005	66,455		
2004	66,409		
2003	66,328		

Manlixalire
 How Many People Attended NFL Games?

Directions: Use the rounded numbers to make a line graph.

Graph Title:

NFL Average Attendance

Goals/Objectives:

Students will:

- Create a graph of information obtained from a data set.
- Analyze data recorded on a graph.
- Calculate the mean, median, and mode of Super Bowl MVP's by starting position.

Common Core Standards: Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Using Superbowl.com, have students record the starting position of each MVP from all Super Bowl games. Students should record this information in a graph (bar, pie, line). Have students analyze the data as follows:
* Find the position that is the mode of the data set.
* Find the median of the data set.
* Find the mean of the data set.
* Find the mean of each position relative to the number of Super Bowls.

Materials:

- Super Bowl MVP's information
- Paper
- Pen or pencil
- Calculator (optional)
- Colored pencil (optional)

Assessment:

- Students will be assessed on accuracy of responses.

Goals/Objectives:

Students will:

- Review counting money
- Practice addition, subtraction, and multiplication facts
- Make change for purchases at a football concession stand
- Write monetary units using the dollar sign and the decimal point

Common Core Standards: Number Operations in Base Ten

Methods/Procedures:

- As a whole class or small group activity, have students create a menu board for a concession stand. The menu should include foods typically served at a football game such as hot dogs, popcorn, soda, Cracker Jacks, etc., and should include competitive pricing.
- Students should work in pairs so each student has a turn as the buyer and the seller. Make sure each pair of students has a copy of the menu board for the concession stand with the items for sale and prices on it. Give each student an envelope with various amounts of play money.
- Have each student complete a tally ticket, which asks questions about the possibilities afforded them with their available money. Questions posed on the tally ticket could include the following:

1. How much money do you have to spend at the game?
2. If your family of four wants to buy hot dogs and drinks, how much will it cost for all of you? How much change will you receive?
3. Do you have enough money to buy one of each item on the menu board? How much will it cost? How much change will you receive? *Partners should check one another's tally ticket responses for accuracy.

- Have students role play the purchasing of food at the concession stand. The buyer should order items from the menu board. The seller should create a receipt for the buyer. Then, the buyer should pay the bill and the seller makes change if necessary. Each partner should check the monetary transactions performed for accuracy.

Materials:

- Envelopes
- Play money (assortment of bills and coins)
- Materials for constructing a menu board
- Tally Ticket

Assessment:

- Student participation
- Accuracy of answers on Tally Ticket
- Accuracy of monetary transactions
- Teacher observations of money skills, addition, subtraction and multiplication

Goals/Objectives:

Students will:

- Practice with units of measurements: yards, feet, inches.
- Keep statistics for an individual player of their choice.
- Review the concept of to scale.

Common Core Standards: Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Students will use a replica of a football field (drawn to scale, unless a trip to the high school stadium can be arranged) and practice measuring.
- Students will practice measuring 'downs.'
- Students will use the statistics of a player to see how the yardage is compiled.

Materials:

- Rulers
- Measuring tape
- Pencils
- Small footballs (can use the example from the drawing section)
- Actual Football Field if available

Assessment:

- Students will be able to explain what a football field looks like and draw a replica of a field (yard markers, etc.)
- Teacher observations of students' measurements
- Teacher and students can review data collected

 Finding Your Team's Bearings

Goals/Objectives:

Students will:

- Demonstrate an understanding of the concept of bearings.
- Demonstrate an understanding of the two types of information given on a compass:

1. Direction - North, East, South, West
2. Bearings - degree measurements (North $=0$ or 360 degrees, East $=90$ degrees, South $=180$ degrees, and West = 270 degrees)

Common Core Standards: Geometry

Methods/Procedures:

- Students need a protractor and a United States map showing major cities (All NFL cities should be shown)
- The teacher will review the concept of bearings:
- The directions on a compass - North, South, East and West also can be described by degree measurements
- North $=0$ degrees and 360 degrees; East $=90$ degrees; South $=180$ degrees; West $=270$ degrees
- The teacher models using a protractor to find bearings.
- Each student is assigned an NFL Team in which the students need to find the bearings their team will take to each game.
For example: Cleveland Browns
A. Play at home against the Pittsburgh Steelers their second game - skip
B. In their third game the Browns must travel to Baltimore - what is the bearing they must travel?
C. In their fourth game the Browns must travel to Cincinnati - so for purposes of this exercise what is the bearing the team must travel from Baltimore to Cincinnati?
D. In their fifth game, the Browns must travel back home to play the New York Giants - so for purposes of this exercise what is the bearing the team must travel from Cincinnati to Cleveland?
E. Etc.

Materials:

- Access to the Internet
- Access to NFL team websites at www.nfl.com (links to team sites are at the top of the page)
- Schedules can be printed for the students before the lesson
- Map of the U.S.
- Protractor, paper and writing tool

Assessment:

- Teacher Obervations
- Check for accuracy of bearings

Adaptation for primary grades:

- Have students locate two cities on a large map. For example, Baltimore to Cleveland and then instead of using bearings have the students estimate the approximate direction between the

Hall of Fame Shapes

Goals/Objectives:

Students will:

- Locate and name planes and solid shapes: circle, square, triangle, diamond, oval, sphere, pyramid, cone, cylinder, cube
- Find planes and solid shapes in the environment
- Sort objects by shape
- Graph everyday objects
- Write or dictate a sentence related to each shape that was located

Common Core Standards: Geometry

Methods/Procedures:

- Students will review plane and solid shape names and the characteristics of each.
- Students will locate real objects to match these shapes in their classroom, school building or home and match them to class models of these shapes. Pictures of familiar objects will be sorted, classified and graphed by shape name.
- Teacher prepares name tags for groups, each depicting one plane and one solid shape.
- Students will tour the Pro Football Hall of Fame to get an overview. During a shape scavenger hunt through the building, groups of students (those wearing the same shape name tags) will find real objects that are the same as the plane and solid shape depicted on their tag.
- The chaperone accompanying each group of students will allow a group member to take a photo of each shape that was found on the shape scavenger hunt and will record the name of the object.
- Photos will be developed or printed. Chaperone will give teacher a list of what their group photographed. Each group of students will write or dictate a sentence about the shape, such as, "The ring is a circle."
- If a field trip to the Hall of Fame cannot be made, students should use the Hall of Fame's website at Profootballhof.com to view its exhibits

Materials:

- Models of shapes
- Name tags depicting one plane and one solid shape
- Disposable or digital camera for each group of 3-4 students
- Paper/pencil for chaperone to record shape names

Assessment:

- Teacher observation during the trip
- The photo product from the shape scavenger hunt
- The sentences written or dictated by the students

Maliwnill Jersey Number Math

Goals/Objectives:

Students will:

- Research Hall of Famers' jersey numbers.
- Using http://www.profootballhof.com/players/ find the jersey number worn by each player
- In the "search" bar, type in the last name of the player you are looking for
- After you search for this player, click on "View Profile"
- When you get to the player, do not scroll down the page, click on "Career Capsule"
- If "Career Capsule" is not listed, look at some of the pictures of the player and use the jersey number in those pictures
- This will take you to the players basic information
- At the bottom of that page you will see "Uniform Number"
- Solve basic addition and subtraction facts

Common Core Standards: Number Operations in Base Ten

Methods/Procedures:

- Students will research Pro Football Hall of Famers' jersey numbers.
- Students will complete the Hall of Famer Jersey Math Worksheet
- Students can find a Hall of Famer's jersey number for the answer.
- This can be adapted to multiplication and division as well.

Materials:

- Computer
- Access to the Internet
- Access to http://www.profootballhof.com/players/
- Hall of Famer Jersey Math Worksheet
- Pen or Pencil

Assessment:

- Accuracy of answers on Hall of Famer Jersey Math Worksheet.

Directions: Look up the Hall of Famers number. Use the Hall of Famers number to complete each equation. (ALL CAPS on ProFootballHOF.com)

Len Dawson
+ Troy Aikman

Dave Casper
+ Bart Starr

Lou Groza
+ Andre Tippett

Dan Hampton

+ Fritz Pollard

George Blanda

- Guy Chamberlin

Ozzie Newsome

- Joe Montana

Terry Bradshaw

- Wilber Henry

Larry Csonka

+ John Elway

Mike Ditka

- Charlie Sanders

	John Randle
-	Lou Creekmur

Bronko Nagurski

+ Joe Perry

Jack Youngblood

+ Dan Marino

NaIIIM, ITM
 Math Football

Goals/Objectives:

Students will:

- Practice math facts for review.
- Create a fun way to practice math facts.

Common Core Standards: Number Operations in Base Ten

Methods/Procedures:

- The class will be divided into two equal groups (teams).
- Students will need pencil and paper.
- Students from each team will be given a number that matches one other student from the opposing team.
- The teacher will choose a captain and quarterback from each team. There will be a coin toss at the beginning to see which team will kickoff or receive.
- The team that kicks will choose a card from the kickoff cards, which represents different lengths of kicks. The ball will be marked on the board.
- The teams will compete by working on the problems given by the teacher.
- Once the problem is given, the teacher will wait 5-10 seconds and pull a number chip. The players from each team that represents the number drawn will get to answer the problem. The person who answers first gets a first down or a stop for their respective team.
- If the offensive team gets stopped 3 times, they must go to the 4th down cards or try for a field goal (if they are inside the opposing team's 40 yard line). Passing cards are allowed after every third play, as long as the offensive team has at least one first down.
- Play continues until time runs out.
- The team with the most points wins. If tied, the team with the most first downs wins. If first downs are tied, then the winner is determined by most stops.
- All points, first downs and stops are listed out on the board.

Materials:

- Paper, pencil, chalk \& chalkboard, White Board or SMART Board
- Overhead projector \& football field overhead
- Math sheets \& number chips
- Cards for kickoff, 4th down pile and passing

Assessment:

- Teacher observation
- Teacher visually checks problems worked on paper.

How Far is 300 Yards?

Goals/Objectives:

Students will:

- Convert measurements between yards, feet, and inches.
- Measure objects to the nearest inch, foot, and yard.

Common Core Standards: Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Students will use a ruler to determine how many inches there are in a foot.
- Students will measure three items to the nearest inch (i.e., their pencil, book, crayon, desk, etc.) Share with the class and explain how they obtained their results.
- Students will then measure some objects to the nearest foot i.e., the White Board/SMART Board, door, height, etc. Then students will compute how many inches that would be. Students will share their conversions and procedures with the class so the teacher can assess understanding.
- Students will then use a yardstick to measure several objects i.e., a counter, a carpet, or a table. Then students will convert the number of yards to the amount of feet and inches. Students will share answers with the class so the teacher can assess understanding. These results can be made into a table on the board.
- Students will then complete the worksheet provided on the following page with the table to convert the number of yards gained during the football game to inches and feet.
- After the students complete the worksheet, they may go outside to the playground or football field and see the actual measurements.
- Older students can then compare their answers and discuss why there are different results. Was everyone precise with their measuring? Which measurements are accurate? Discuss how most measurements contain some error in them.

Materials:

- Ruler with inches
- Yard stick
- Materials in the classroom to measure
- Worksheet (easy or harder version)
- Pencils
- White Board or SMART Board

Assessment:

- Teacher Observation
- Worksheet Accuracy

Directions: Below is a list of some of the players who earned 300 combined net yards in a single game. Complete the chart by converting the amount of net yards in a game to feet and inches.

Player	Team	Yards	Feet	Inches
Jason Tucker	Dallas Cowboys	331		
Jermaine Lewis	Baltimore Ravens	308		
Jacoby Ford	Oakland Raiders	329		
Glyn Milburn	Denver Broncos	404		
Tyrone Hughes	New Orleans Saints	347		
John Taylor	San Francisco 49ers	321		
Willie Anderson	Los Angeles Rams	336		
Joshua Cribbs	Cleveland Browns	316		
Stephone Paige	Kansas City Chiefs	309		
Lionel James	San Diego Chargers	345		
Adrian Peterson	Minnesota Vikings	361		
Walter Payton	Chicago Bears	300		
Darren Sproles	San Diego Chargers	317		
Steve Smith	Carolina Panthers	313		
Calvin Johnson	Detroit Lions	329		
LeGarrette Blount	New England Patriots	334		
Tavon Austin	St. Louis Rams	314		
Tim Brown	Oakland Raiders	303		
Jim Brown	Cleveland Browns	313		
Gale Sayers	Chicago Bears	339		

Goals/Objectives:

Students will:

- Students will determine number patterns from a given set of numbers

Common Core Standards: Number Operations in Base Ten; Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Students will be given a chart with the yardage gained from running backs in each quarter of a game.
- Students will look at the number in each quarter to determine the number pattern.
- Students will then determine either how to continue the pattern or what number in the pattern is missing.
- Students will share the number operations they used to determine the pattern.

Materials:

- Number Pattern Worksheet
- Pencils

Assessment:

- Teacher Observation
- Worksheet Accuracy

Nalitulili Number Patterns

Directions: Fill in the charts below by analyzing the numbers given to determine the numbers needed to complete each pattern.

Running Back	1st Quarter	2nd Quarter		4rd Quarter		4th Quarter
A	3 yards	6 yards	9 yards			
B	15 yards		25 yards	30 yards		
C		16 yards	20 yards	24 yards		
D	28 yards	40 yards		64 yards		

What is running back A's number pattern? \qquad
What is running back B's number pattern? \qquad
What is running back C's number pattern? \qquad
What is running back D's number pattern? \qquad
You may use the space below to show your work.

Running Back	1st Quarter	2nd Quarter		3 保 Quarter		4th Quarter
E	4.5 yards	8 yards	11.5 yards			
F	12.2 yards		26.8 yards	34.1 yards		
G		15.4 yards	17.1 yards	18.8 yards		
H	28.6 yards	39 yards		59.8 yards		

What is running back A's number pattern? \qquad
What is running back B's number pattern? \qquad
What is running back C's number pattern? \qquad
What is running back D's number pattern? \qquad
You may use the space below to show your work.

Goals/Objectives:

Students will:

- Learn the proper techniques of punting, passing and snapping a football.
- Calculate the mean, median and mode of the class's data for these three football skills.
- Compare/contrast the three different sets of data.

Common Core Standards: Number Operations in Base Ten; Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Introduce and define the three measures of central tendency: mean=average, median=exact middle, mode=number occurring most often
- Set up a chart for the class listing all students' names, leaving blank sections to record the distance each student throws, kicks and long-snaps the ball.
- Teach students to execute all three skills, allow time for practice.
- Have students take turns throwing the football as far as they can, recording the distance each student throws in yards. Repeat this procedure with the kick and long snap.
- Have students arrange the data on a visual chart, graph or number line in ascending order, displaying individual statistics.
- Instruct students to calculate the mean, median and mode for each of the 3 sets of data.
- Guide students through a comparison of each set of data and discuss why they differ.

Materials:

- Footballs
- Paper
- Pen/pencil
- Clipboards
- Chart paper
- Whistle
- Field marked off in yards

Assessment:

- Teacher Observation
- Completion of mean, median and mode calculations

Nalitulili
 Running to the Hall of Fame

Goals/Objectives:

Students will:

- Create a scatter plot with information on attempts and yards gained.
- Create a best fit line which would show the slope of the line as the average yards per carry.

Common Core Standards: Number Operations in Base Ten; Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Find information on attempts and yards gained for Hall of Fame running backs like Jim Brown, Jim Taylor and Walter Payton.
- Create a scatter plot using the x-axis for number of attempts and the y-axis for yards gained.
- Plot the (x, y) points of at least seven Hall of Fame running backs.
- Create a best fit line (straight line that represents these x, y data points).
- Find a good slope $\frac{Y 2-Y 1}{X 2-X 1}$ of this best fit line.
- This should be the approximate yards per carry of these great running backs.

Materials:

- Computers (Hall of Famer information on ProFootballHOF.com)
- Graph paper
- Rulers
- Colored pencils
- Calculators
- Sports books for reference like 2021 NFL Record and Fact Book.

Assessment:

- Students will be able to show a best fit line on a scatter plot graph. The average yards per carry should be reasonable (slope of line calculated).

Same Data Different Eraph

Goals/Objectives:

Students will:

- Take data provided by the teacher and as a class, group or individual, compare differing representations of it to determine which representation best imparts the intended message or meaning.

Common Core Standards: Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- This lesson can be undertaken prior to or after visiting the Pro Football Hall of Fame or the Hall of Fame website at Profootballhof.com. Students will have held at least one discussion on professional football and various aspects of the sport to make certain all students are somewhat familiar with the game.
- The teacher will then provide the students with data from this activity guide or from the website (ProFootballHOF.com.) A good source in this activity guide is the page listing the current Super Bowl Champs, the Kansas City Chiefs (page MA 35). This page has a column that lists which college each player attended. Students can use this data in their data representations (bar, pie etc.).
- At this point the instructor should decide whether to do this data representation as a class, group or individual. Doing one graphic representation (i.e. bar graph) of colleges attended by the winning Super Bowl team as a class is a great starting point for discussion and reference point.
- Students can be assigned to do another graph (i.e. pie) by filling in the proper 'slice' with college name as a transition to doing a representation without any assistance.
- If the teacher chooses individual or group work instead of class as a whole work, time should be set aside to present graphs and findings to class.
- The class should come to a consensus or at the least discuss which graphic representation best imparts the information. The strong and weak points of each representation should be addressed.

Materials:

- Access to the Internet
- Access to HOF website at ProFootballHOF.com
- Statistics to graph....i.e. Current Super Bowl Team Members' Roster in Activity Book

Assessment:

- Students will present to the class graphical representations and analysis of the data.
- See examples on the following page.

MTIITNIIITH Same Data Different Graph

Example 1:

Ohio State	Illinois	Alabama	Pitt
2	1	3	1

Example 2:

Goals/Objectives:

Students will:

- Follow directions and dreate a new football stadium using knowledge of shapes and numbers.

Common Core Standards: Geometry

Methods/Procedures:

- Students will work in pairs or small groups (team building).
- Each team will review a list of requirements that the stadiums must have to be considered complete.
- Each team will plan and draw their stadium.
- Each team will check to make sure they meet each requirement.

Materials:

- Drawing paper for each pair or group
- Pencils
- Rulers
- Checklists

Assessment:

- Observation of team discussions
- Completed stadium drawings

Goals/Objectives:

Students will:

- Design a survey, collect data and interpret data collected related to an 'issue' in professional football.

Common Core Standards: Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Prior to visiting to the Pro Football Hall of Fame or the Hall of Fame website (Profootballhof.com), students will have held one (or more if necessary) discussion on professional football and the role it plays in the lives of individuals today.
- The teacher will guide the discussion to include 'issues' or concerns that students have thought of themselves or have read or seen in the media. An example might be the age that an individual should be before he can be drafted by an NFL team. Another could be the role that women play in the NFL. The possibilities are endless and students will have no problem compiling a significant list of 'issues.'
- At this point the instructor should decide whether this is an individual OR a group project.
- Once the make-up of the study's members is decided, students need to write the survey question or issue in a coherent and statistically measurable format.
- After the instructor approves the format of the issue to be surveyed, students must collect data from an adequate audience population and a representative audience. Because this is part of the standard's requirements and will be part of the instructor's evaluation criteria, the audience and population of the audience is something the student(s) must determine.
- Once the survey has been completed, the student(s) will interpret the data with graphical displays. At this point, the instructor can determine the format and the quantity of diverse graphic representations that are necessary.
- The student(s) must include in their presentation variability as a factor, correlation and standard deviation.
- The presentation can be in the form of a class lecture by each student or group or in the form of a turn-in project. The use of the tri-fold science fair board is a great method of display for data and explanation of 'issue.'

Materials:

- Access to the Internet
- Access to HOF website at ProFootballHOF.com
- Optional science fair tri-folds

Assessment:

- Students will present to the class or in report form to the instructor the results and analysis of the data collected.

Using Variables with NFL Scorers

Goals/Objectives:

Students will:

- Create number sentences with variables and then solve the variables using story problems

Common Core Standards: Operations and Algebraic Thinking

Methods/Procedures:

- The class will begin discussing how many points are usually scored in a football game.
- The class will use the worksheets provided on the following pages to make number sentences with variables and then solve the variables.

Materials:

- Pencil
- Worksheet

Assessment:

- Classroom participation
- Completion of worksheet

Directions: For each problem write a number sentence to solve the problem and see how

 many points the top 10 NFL scorers made. Then find out the variable by using another sheet of paper. Use the table to help you. The first one has been done for you.| TYPE OF PLAY | POINTS |
| :---: | :---: |
| Touchdown | 6 |
| Field Goal | 3 |
| Extra Point | 1 |

1. Adam Vinatieri has scored 2,673 points. He scored one 2-point conversion and kicked 599 field goals. How many extra points did he score? \qquad
Number sentence: \qquad
2. Morten Andersen scored 2,544 points. He made 565 field goals and no touchdowns. How many extra points did he score? \qquad
Number sentence: \qquad
3. Gary Anderson has 2,434 points. He earned 820 extra points and no touchdowns. How many field goals did he get?

Number sentence: \qquad
4. Jason Hanson played football for 21 years. He didn't have any touchdowns but he did score 2,150 points. If he had 665 extra points, how many field goals did he score? \qquad
Number sentence: \qquad
5. John Carney played football for 23 years. During that time he scored 628 extra points and 478 field goals. How many total points did he score? \qquad
Number sentence: \qquad
6. Matt Stover played in the NFL for 19 years. During that time he has scored 471 field goals, 0 touchdowns, and a total of 2,004 points. Determine how many extra points he scored. \qquad
Number sentence: \qquad
7. George Blanda scored 2,002 points. He scored 9 touchdowns and 335 field goals. How many extra points did he score? \qquad
Number sentence: \qquad

Using Variables with NFL Scorers

8. Jason Elam is the 8th top scorer in NFL history. He scored 1,983 points and didn't score any touchdowns. If he made 675 extra points, how many field goals did he score? \qquad
Number sentence: \qquad
9. John Kasay played football for 20 years. He did not score any touchdowns but he did score 461 field goals and a total of 1,970 points. How many extra points did he get? \qquad
Number sentence: \qquad
10. Sebastian Janikowski is the 10th top scorer in NFL history. He scored 1,913 points. If he made 605 extra points, how many field goals did he score? \qquad
Number sentence: \qquad
Compiled from 2021 NFL Record and Fact Book

Goals/Objectives:

Students will:

- Find factors and multiples of players' numbers
- Identify numbers as prime and composite

Common Core Standards: Operations and Algebraic Thinking

Methods/Procedures:

- The students should have familiarity with finding factors. The class should begin with a review of how to find factors of a number. For example, the factors of 50 would be: 1, 2, 5, $10,25,50$. You may prefer for the students to list the factors like this: $1 * 50,2 * 25,5 *$ 10.
- Students will learn how to classify numbers whether they are prime or composite. A prime number has only two factors: 1 and itself. An example would be 5 because the only two numbers that multiply together to equal 5 would be 1 and 5 . Composite numbers have 3 or more factors. For example 50 would be composite because it has 6 factors.
- Students will do some practice determining if a number is prime or composite. The teacher can hand each student a different number on an index card and the students can find the factors and then place the card on the board either in the prime or composite category.
Students can also count the letters in their first or last name and determine if that number is prime or composite.
- The class should also talk about finding multiples of a number. So given the number 4 , the multiples would be $4,8,12,16,20$, etc.
- Once the class has practiced, they can work on the worksheet.
- Addition: Teacher can use scores from Super Bowls, local NFL Team games, etc. to use as numbers to find factors

Materials:

- Pencil
- Worksheet
- Index cards
- Tape to place the index cards on the board

Assessment:

- Teacher Observation
- Worksheet

Directions: Use the number of each Hall of Famer to complete the worksheet.

\#8
The factors of 8 are:
Is the number 8 prime or composite?
Five multiples of 8 are:

Harry Carson
\#53
The factors of 53 are:
$\overline{\text { Is the number } 53 \text { prime or composite? }}$
Five multiples of 53 are:

Dick Lane

 \#81The factors of 81 are:
Is the number 81 prime or composite?
Five multiples of 81 are:

Lee Roy Selmon

\#63
The factors of 63 are:
Is the number 63 prime or composite?
Five multiples of 63 are:

Bill George \#61

The factors of 61 are:
Is the number 61 prime or composite?
Five multiples of 61 are:

David (Deacon)Jones \#75

The factors of 75 are:
Is the number 75 prime or composite?
Five multiples of 75 are:

Doak Walker \#37

The factors of 37 are:
Is the number 37 prime or composite?
Five multiples of 37 are:

Otto Graham

\#60
The factors of 60 are:
Is the number 60 prime or composite?
Five multiples of 60 are:

Tackling Football Math

Goals/Objectives:

Students will:

- Improve math skills by applying basic functions to the game of football.
- Review basic football facts and game terms.
- Utilize statistics of NFL football players and teams for computing math problems.
- Research statistics of selected NFL football players and teams for use as alternative information in certain math problems.

Common Core Standards: Operations and Algebraic Thinking; Number Operations in Base Ten; Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Students will complete the math worksheets provided on the following pages related to the game of football. They may work independently or with others. Feel free to make adaptations in players and teams to suit your students. Answers to the following worksheets are found in the back of this publication.
* A Day at the Game
* How Old are They?
* Conversions in Football
* Super Bowl Numbers
* Super Bowl LIV Thunder
* Top Active Rushers
* Miscellaneous Math Activities

Materials:

- Pencil
- Scrap paper for working problems
- Calculators if permitted
- Worksheets

Assessment:

- Students will be assessed on accuracy of responses.

MIITHATIN
A Day at the Game

Directions: Complete the following problems, be sure to show all of your work on a seperate sheet of paper.

1. Tickets for the game are $\$ 62.00$ each. A family of six attended the game on Sunday. What was the total cost of the tickets?
2. There are four quarters in a game, each lasting 15 minutes. What is the total number of minutes in a game? Convert the total minutes to seconds.
3. There are 53 members on one NFL team, but only 11 players are on the field at one time. How many are still on the sideline?
4. The seating capacity for FirstEnergy Stadium in Cleveland is 67,895 . There were 66,528 in attendance for the game. How many empty seats were there?
5. Twenty-four game balls are used in every indoor NFL game. If one ball weighs 13 ounces, how many ounces do 24 balls weigh? Convert to pounds. Clue: 16 ounces $=1 \mathrm{lb}$.
6. Vendors were selling programs for $\$ 5.00$ each throughout the stadium. If 20 vendors each sold 32 programs in one hour for five hours, how many total programs did the vendors sell?
7. A family of three decided to buy some souvenirs while at the game. They purchased two pennants at $\$ 4.99$ each, two hats at $\$ 24.99$ each, one football at $\$ 19.99$ and two programs at $\$ 5.00$ a piece. How much did they spend?
8. Throughout the game they purchased snacks to eat. They bought 5 hot dogs at $\$ 3.00$ each, 2 bags of peanuts and 2 bags of popcorn at $\$ 3.25$ a piece, 4 soft drinks at $\$ 2.75$ each and 2 ice cream cones at $\$ 3.25$ each. What was the total?
9. The game kicked off at 1:05 p.m. and ended at 4:44 p.m. How many hours and minutes did the game last?
10. If 90% of the seats in Ford Field, which holds 65,000 people, are filled for an NFL game, how many fans are there?
11. Your football team scored 18 points more than the previous high score of 56 points. What is their new high score?
12. On a series of downs, the football was spotted on your own 48 -yard line. The quarterback passed for 15 yards, lost 9 yards when the quarterback was sacked, and then gained 17 yards on a halfback run. Where was the ball placed for the next down?

Nalitulire
 A Day at the Game

13. Your football team had a field goal in the first quarter, a touchdown plus an extra point in the second quarter, a touchdown but missed the extra point in the third quarter, and a safety in the fourth quarter. In the fourth quarter, the opposing team had 2 touchdowns followed by 2-point conversions for each touchdown. What was the final score of the game?
14. Your football team had penalties of 15 yards, 5 yards, 15 yards, and 15 yards. The opposing team had 5 yards fewer than half that in penalties. What were the total yards lost for the game?
15. At the concession stand, the Booster Club makes a nickel profit on each candy bar, a quarter on each box of popcorn, and $\$.40$ for each beverage. If they sold 70 boxes of popcorn, 45 candy bars, and 107 beverages, what was their total profit?
16. What is the area of a high school football field from goal line to goal line (a football field is $531 / 3$ yards wide)?
17. Ticket sales were up this season by 17%. If last year's totaled $\$ 12,000$, what were this year's sales?
18. The price of a student ticket was raised from $\$ 3.00$ to $\$ 3.50$ and the price of an adult ticket was raised from $\$ 5.00$ to $\$ 5.50$. If ticket sales for the first game of the season were 210 student tickets and 748 adult tickets, what was the total additional revenue?
19. Football ticket sales bring in a profit of $\$ 10,000$ annually. New stadium lights and bleachers will cost $\$ 24,000$, annual maintenance is $\$ 2,000$ and $\$ 1,000$ is needed for the replacement of equipment each year. Given the figures, how many years will it take to break even and begin making a profit?
20. It is second down and 9 -yards to go for the first down. The quarterback is sacked for an 8 -yard loss. On third down, how many yards are necessary to achieve a first down?
21. The football game is scheduled to begin at 7:30 p.m. The pre-game show lasts 8 minutes. The band must report 10 minutes prior to the start of the pre-game show. What time must the band be present?
22. In the fourth quarter the clock says $1: 59.04$. The next 4 plays take 39.2 seconds, $15.85,20.08$, and 9.79 seconds off the clock. How much time is left?
23. The stadium lights are turned on at 6:40 p.m. and turned off 30 minutes after the game is over. If the game is over at 9:28 p.m., how many minutes of electricity will be charged by the utility company?

MITIWN ITH
A Day at the Game
24. Given the following attendance statistics for your school's 7 home games, find the median for the attendance at the home games

Home Games	Attendance
$\# 1$	958
$\# 2$	15,002
$\# 3$	500
$\# 4$	12,980
$\# 5$	11,040
$\# 6$	935
$\# 7$	10,091

25. The kick-returner fielded 5 punts during the game. The first, he caught at his own 8 -yard line and returned it to his own 26 -yard line. The second, he caught at the opponent's 48 -yard line and returned it to their 34 -yard line. The third, he made a "fair catch" at his own 26 -yard line. The fourth he fielded at his own 12-yard line and scored a touchdown. The fifth, he caught on his 28 -yard line and was immediately tackled for no gain. What was his average punt return for this game?
26. What percentage of the field has your team covered if they move the ball from their 20-yard line to their 40-yard line?
27. The defensive back intercepts the football at his own 5 -yard line and runs to the opposing team's 5 -yard line before being tackled. How many yards did he gain on the interception?
28. The kicker made successful field goals of 37 yards, 29 yards, 42 yards, 18 yards, 19 yards, 40 yards, 31 yards, and 20 yards. He missed field goals of 50 yards and 46 yards. What was his percent of success?
29. In the first game of the season, the fullback ran for 17 yards, 5 yards, 12 yards, 21 yards, -6 yards, 34 yards, 3 yards, -2 yards, 10 yards, 7 yards, 4 yards, 18 yards, 66 yards, and 2 yards. What was his average yards per carry for the game?
30. What is the difference between the tallest player on the team at $7^{\prime} 5 / 8^{\prime \prime}$ and the shortest player on the team at 5 '6 3/4"?

 How Old Are They?

Directions: Read the following paragraphs about two NFL stars. Then complete the charts to figure out each one's age.

During his 17-year, 242-game career with the Miami Dolphins, Hall of Fame quarterback Dan Marino, has earned the right to be called the most prolific passer in NFL history. At the time of his retirement Marino held four of the NFL's major career passing records with 61,361 passing yards, 4,967 completions, 8,358 passing attempts, and 420 passing touchdowns. Marino was selected to nine Pro Bowls during his illustrious career with the Dolphins. Thirteen times Marino passed for 3,000 yards or more in a single season, including six seasons in which he threw for 4,000 yards or more, and one season where he became the first player in NFL history to throw for 5,000 yards in one season. Marino passed for 300 yards in a single game 63 times, and threw for 400 yards or more in a single game 13 times - both were NFL records when he retired. Use the steps below to figure out his age.

Step 1 \qquad \# of career completions x \qquad \# of Pro Bowls $=$ \qquad total for step 1	Step 4 \qquad \# of career games \qquad $+$ total for step 3 = \qquad total step 4	Step 7 \qquad total step 6 \qquad \# of 400-yard games $=$ \qquad total step 7
Step 2 \qquad \# of career passing yards \qquad total Step 1 \qquad total for step 2	Step 5 \qquad total step 4 \qquad \# of career touchdown passes = \qquad total step 5	Step 8 \qquad total of step 7 $+15$ $=$ \qquad Dan's Age
Step 3 \qquad total step 2 = \qquad total step 3	Step 6 \qquad total step 5 \qquad \# of 3,000-yd seasons $=$ \qquad total step 6	

Hall of Fame quarterback John Elway became known as "Mr. Comeback" due to his 47 career fourth quarter comeback victories or ties. Elway was selected to nine Pro Bowls during his 16-year career with the Denver Broncos. Considered as one of the most versatile quarterbacks in NFL history Elway scrambled to a career rushing mark of 3,407 yards. His 51,475 career passing yards, 7,250 passing attempts, along with 4,123 completions, placed him second on the NFL's all-time passing list at the time of his retirement. Elway's versatility is displayed by his 334 total career touchdowns (300 passing, 33 rushing, and 1 receiving). Elway led his team into five Super Bowl appearances that included two NFL championships. Elway took home the Super Bowl MVP Award in the final game of his career. Use the steps below to figure out his age.

Step 1 \qquad \# career passing yards \qquad \# Super Bowl starts $=$ \qquad total for step 1	Step 3 \qquad total for step 2 \qquad total for step 1 $=$ \qquad total for step 3	Step 5 \qquad total for step 4 \qquad \# of Super Bowl MVP = \qquad total of step 5
Step 2 \qquad \# of career attempts \qquad \# of career rushing yards = \qquad total for step 2	Step 4 \qquad total career touchdowns \qquad rushing, receiving) \qquad fourth quarter comebacks $+$ \qquad Pro Bowls $=$ \qquad total for step 4	Step 6 \qquad total for step 3 \qquad total for step 5 $=$ \qquad John's age

Directions: Complete the following problems, be sure to show all of your work on a seperate sheet of paper.

1. During his career, Barry Sanders rushed for 15,269 yards. How many feet is that? \qquad
2. Cordarrelle Patterson of the Minnesota Vikings returned a kickoff for an NFL record 109 yards in 2013. How many inches is that? \qquad
3. Dan Marino passed for 61,361 yards in his career. How many miles is that? \qquad *Hint: 1 mile = 1,760 yards Round to the nearest tenth.
4. Cooper Kupp of the Los Angeles Rams led the NFL in receiving yards with 1,947 receiving yards in 2021. How many feet is that? \qquad
5. The Packers have the ball on their own 25 -yard line and they complete a 45 -yard pass. They then lose 4 yards on the next play. What yard line are they on now? \qquad
6. Patrick Mahomes throws a 54 -yard pass. How many inches did he throw? \qquad How many centimeters? \qquad Hint: 1 inch $=2.54$ centimeters
7. A football field measures 100 yards from goal line to goal line. A field is $531 / 3$ yards wide. Convert these measurements to feet. \qquad
8. Trent Brown of the New England Patriots weighs 380 pounds. How much does he weigh in ounces? \qquad
9. A game normally lasts 60 minutes. During a 17-game season, how many total minutes does one team play? \qquad
10. There are seven officials on the field for every NFL game. If 16 games are played each week, what is the total number of officials officiating throughout the NFL each week? \qquad

Nalitulirn Super Bowl Numbers

Super Bowl games are written with Roman numerals. The use of Roman numerals actually began with Super Bowl V. Use the chart to calculate past and future games.

Roman Numeral Chart

1	2	3	4	5	6	7	8	9	10	50
I	II	III	IV	V	VI	VII	VIII	IX	X	L

Example: $\begin{array}{r} X=10 \\ +I X=9 \\ \hline \end{array}$ Super Bowl 19		
$X=$ \qquad $+\mathrm{V}=$ Super Bowl	$\begin{array}{r} \mathrm{X}= \\ +\mathrm{IV}= \\ \text { Super Bowl } \end{array}$	$\begin{array}{r} \mathrm{V}= \\ +\mathrm{IV}= \\ \text { Super Bowl } \end{array}$
$\begin{aligned} & \mathrm{X}= \\ &+\mathrm{X}= \\ &+\mathrm{III}= \\ & \text { Super Bowl } \end{aligned}$	$\begin{array}{r} \mathrm{X}= \\ +\mathrm{X}= \\ +\mathrm{VI}= \\ \text { Super Bowl } \end{array}$	$\begin{array}{r} \mathrm{X}= \\ +\mathrm{V}= \\ +\mathrm{III}= \\ \text { Super Bowl } \end{array}$
$\begin{array}{r} \mathrm{X}= \\ +\mathrm{X}= \\ +\mathrm{X}= \\ +\mathrm{V}= \end{array}$ \qquad \qquad \qquad Super Bowl \qquad	$\mathrm{X}=$ $+\mathrm{X}=$ $+\mathrm{X}=$ $+\mathrm{II}=$ Super Bowl	$\mathrm{X}=$ $+\mathrm{X}=$ $+\mathrm{X}=$ $+\mathrm{VII}=$ Super Bowl

- Write the Roman numeral for Super Bowl 57 which will be played in Glendale, AZ. \qquad

Directions: Answer the following questions using the Los Angeles Rams' roster on the following page.

1. Who was the oldest player on the team?
2. What number was Cooper Kupp?
3. How many wide receivers (WR) were there?
4. How many players had 10 or more years of NFL experience?
5. How many quarterbacks (QB) were listed?
6. Who was the only player to attend the Azusa Pacific?
7. Who was the heaviest player on the team?
8. Who was the lightest player on the team?
9. What position did number 6 play?
10. Add up the total weight of all the running backs (RB).

\#	NAME	POS	H	WT.	AGE	EXP.	COLL
23	Akers, Cam	RB	5-10	217	23	2	Florida State
55	Allen, Brian	OL	6-2	303	26	4	Michigan State
72	Anchrum Jr., T.	OL	6-2	314	24	2	Clemson
3	Beckham Jr., Odell	WR	5-11	198	29	8	LSU
86	Blanton, Kendall	TE	6-6	262	26	1	Missouri
39	Brooks Jr., Antoine	LB	5-11	215	26	1	Maryland
95	Brown III, Bobby	DL	6-4	324	22	R	Texas A\&M
26	Burgess, Terrell	S	5-11	202	23	2	Utah
93	Copeland, M.	DL	6-2	287	25	1	Cincinnati
63	Corbett, Austin	OL	6-4	306	26	4	Nevada
21	Deayon, Dont'e	CB	5-9	159	28	4	Boise State
99	Donald, Aaron	DL	6-1	280	31	8	Pittsburgh
73	Edwards, David	OL	6-6	308	25	3	Wisconsin
71	Evans, Bobby	OL	6-4	312	25	3	Oklahoma
54	Floyd, Leonard	OLB	6-5	240	29	6	Georgia
34	Funk, Jake	RB	5-10	205	24	R	Maryland
91	Gaines, Greg	DL	6-1	312	26	3	Washington
48	Garrett, Chris	OLB	6-4	245	24	R	Concordia-St. Paul
8	Gay, Matt	K	6-0	232	28	3	Utah
43	Gervase, Jake	S	6-1	212	26	1	Iowa
46	Haley, Grant	DB	5-9	190	26	3	Penn State
79	Havenstein, Rob	OL	6-8	330	30	7	Wisconsin
6	Hekker, Johnny	P	6-5	241	32	10	Oregon State
89	Higbee, Tyler	TE	6-6	255	29	6	Western Kentucky
96	Hoecht, Michael	DL	6-4	310	24	1	Brown
58	Hollins, Justin	LB	6-5	248	26	3	Oregon
88	Hopkins, Brycen	TE	6-4	245	25	2	Purdue
32	Howard, Travin	ILB	6-1	219	26	2	TCU
38	Howell, Buddy	RB	6-1	218	26	4	Florida Atlantic
68	Jackson, Alaric	OL	6-7	285	24	R	Iowa
12	Jefferson, Van	WR	6-1	200	26	2	Florida
10	Kupp, Cooper	WR	6-2	208	29	5	Eastern Washington
52	Lewis, Terrell	OLB	6-5	262	24	2	Alabama
22	Long Jr., David	CB	5-11	196	24	3	Michigan
25	Michel, Sony	RB	5-11	215	27	4	Georgia
40	Miller, Von	OLB	6-3	250	33	11	Texas A\&M
70	Noteboom, Joe	OL	6-5	321	27	4	TCU
45	Okoronkwo, O.	OLB	6-2	253	27	3	Oklahoma
42	Orzech, Matt	LS	6-3	245	27	2	Azusa Pacific
16	Perkins, Bryce	QB	6-3	214	25	1	Virginia
19	Powell, Brandon	WR	5-8	181	26	4	Florida
5	Ramsey, Jalen	CB	6-1	208	27	6	Florida State
24	Rapp, Taylor	S	6-0	208	24	3	Washington
51	Reeder, Troy	ILB	6-3	245	27	3	Delaware
94	Robinson, A'Shawn	DL	6-4	330	27	6	Alabama
56	Rozeboom, C.	LB	6-2	230	25	1	South Dakota State
33	Scott, Nick	S	5-11	201	27	3	Penn State
65	Shelton, Coleman	OL	6-4	299	27	3	Washington
18	Skowronek, Ben	WR	6-3	224	25	R	Notre Dame
9	Stafford, Matthew	QB	6-3	220	34	13	Georgia
77	Whitworth, Andrew	OL	6-7	330	40	16	LSU
11	Williams, Darious	CB	5-9	187	29	4	Alabama-Birmingham
13	Wolford, John	QB	6-1	200	26	2	Wake Forest

Top Active Rushers Heading into the 2022 Season

Player		Attempts	Yards	Average Yards/Attempt
1.	Adrian Peterson	3,230	14,198	
2.	Mark Ingram	1,755	7,878	
3.	Ezekiel Elliott	1,650	7,386	
4.	Derrick Henry	1,401	6,997	
5.	Le'Veon Bell	1,595	6,554	
6.	Alfred Morris	1,429	6,173	
7.	Melvin Gordon III	1,477	6,144	
8.	Todd Gurley	1,460	6,082	
9.	Lamar Miller	1,354	5,864	
10.	Cam Newton	1,118	5,628	

*Source: Pro Football Reference

1. Who had the best average yards/carry?
2. Who had the lowest average yards/carry?
3. What is the total yards rushed by all ten rushers?
4. What is the total of attempts of all ten rushers?
5. What is the average yards/attempt of all ten rushers combined?

Nalliknili Stats with Randy Moss

Goals/Objectives:

Students will:

- Order numbers from smallest to largest
- Review the terms range, median, mode and mean.
- Determine the range, median, mode of a list of numbers.
- Read and interpret a chart

Common Core Standards: Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Students will answer a set of questions based on a chart given to them representing Hall of Fame wide receiver Randy Moss' career receiving yards
- If able to, create a graph using the data from the chart
- If able to, using NFL.com and/or ProFootballHOF.com, find another Hall of Famer's statistics, create a chart, and find the range, mode, median and mean of the statistics

Materials:

- Hall of Famer's Statistics Chart
- Calculator
- Worksheet
- Access to NFL.com and/or ProFootballHOF.com by computer

Assessment:

- Students will be assessed on accuracy of reponses

NATHINHIIITR
Randy Moss Worksheet

Directions: Using the chart below, answer the questions.
Randy Moss played professional football as a wide receiver from 1998 to 2010. He is a member of the Pro Football Hall of Fame Class of 2018. During his career he caught passes for an amazing 15,292 yards.

Randy Moss Career Receiving Yards	
Year	Yards
1998	1313
1999	1413
2000	1437
2001	1233
2002	1347
2003	1632
2004	767
2005	1005
2006	553
2007	1493
2008	1008
2009	1264
2010	393
Total	15,292

1. The range is the difference between the largest number and the smallest number. What is the range of Moss' receiving yards?
2. The mode is the number that occurs the most. Is there a mode in the chart? Why or why not?
3. The median is the middle number in a series of numbers in ascending order. If there is an even amount of numbers the median is the average of the two middle numbers. What is the median of the chart?
4. The mean is the average of a group of numbers. What is the mean of the chart (Round to the nearest tenth)?

Nallivalir
 NFL Wide Receiver Math

Goals/Objectives:

Students will:

- Order numbers from smallest to largest
- Review the terms range, median, mode and mean.
- Determine the range, median, mode of a list of numbers.
- Read and interpret a chart

Common Core Standards: Measurement and Data: Represent \& Interpret Data

Methods/Procedures:

- Students will answer a set of questions based on a chart depicting the leaders in the NFL for receptions in the 2021-2022 NFL Season
- If able, they can create a bar graph showing in graph form the number of receptions of each NFL Wide Receiver
- If able, use NFL.com and / or ProFootballHOF.com to find other NFL Statistical Category leaders and do the same process

Materials:

- NFL Reception Leaders Chart
- Calculator
- Worksheet
- Graph Paper (If doing bar graphs)
- Access to NFL.com and / or ProFootballHOF.com by computer

Assessment:

- Student will be assessed on accuracy of responses

MaITHANITK
NFL Wide Receiver Math

Directions: Using the chart below, answer the questions.

Below is a chart that shows the top ten number of passes caught by wide receivers in the 2021 season.

WR Reception Leaders		
PLAYER	2021 TEAM	RECEPTIONS
Cooper Kupp	Los Angeles Rams	145
Davante Adams	Green Bay Packers	123
Tyreek Hill	Kansas City Chiefs	111
Justin Jefferson	Minnesota Vikings	108
Dionte Johnson	Pittsburgh Steelers	107
Mark Andrews	Baltimore Ravens	107
Keenan Allen	Los Angeles Chargers	106
Jaylen Waddle	Miami Dolphins	104
Hunter Renfrow	Las Vegas Raiders	103
Chris Godwin	Tampa Bay Buccaneers	98

1. The range is the difference between the largest number and the smallest number. What is the range of the chart?
2. The mode is the number that occurs the most. Is there a mode in the chart? Why or why not?
3. The median is the middle number in a series of numbers in ascending order. If there is an even amount of numbers the median is the average of the two middle numbers. What is the median of the chart?
4. The mean is the average of a group of numbers. What is the mean of the chart?

\section*{Nallivalir

NFL Scoring System

}
NFL Scoring System

}
Goals/Objectives:

Students will:

- Review addition facts
- Practice problem solving skills
- Read and interpret a chart

Common Core Standards: Operations and Algebraic Thinking

Methods/Procedures:

- Students will answer a set of questions based on a chart given to them about how points were given for touchdowns, field goals, and point-after conversions throughout history
- If visiting the Hall of Fame, there is an interective chart where students can view this

Materials:

- Scoring System Chart (If no visit)
- Calculator
- Worksheet

Assessment:

- Student will be assessed on accuracy of responses

Nantixilir
NFL Scoring System

Directions: Using the chart below, answer the questions.

During your visit to the Pro Football Hall of Fame you saw an interactive chart that explained the development of the NFL scoring system. In 1892 scoring in football looked quite different than today. For example, a field goal was worth more than a touchdown.

History of Scoring in the NFL	
Type of Score	Points Awarded
$\underline{1892}$	5 points
Field Goal	4 points
Touchdown	
Point After Touchdown	2 points
$\underline{1897}$	1 point
Point After Touchdown	
	4 points
$\underline{1904}$	
Field Goal	3 Points
$\underline{1909}$	6 points
Field Goal	
1912	
Touchdown	2 points
	1994
2 -Point Conversion	

The 2020 AFC Wild Card round of the NFL playoffs placed the Buffalo Bills against the Houston Texans. The final score was:

Texans - 22
Bills - 19
Texans Field Goals $=2$ for 6 points
Texans Touchdowns $=2$ for 12 points
Extra Point $=0$ for 0 points
2-Point Conversions $=2$ for 4 points
Texans total $=22$ points
Bills Field Goals $=4$ for 12 points
Bills Touchdowns $=1$ for 6 points
Extra Point = 1 for 1 point
2-Point Conversions $=0$ for 0 points
Bills total $=19$ points

1. Are there other ways the teams could have achieved the same scores? If so, please explain. If no, please explain.
2. What would the score be if the game had been played in 1892 ?

MaIIINMITN
 Tom Benson Hall of Fame Stadium Ceometry

Goals/Objectives:

Students will:

- Review the basic geometric shapes.
- Locate and name basic geometric shapes from a photo.

Common Core Standards: Reason with shapes and their attributes

Methods/Procedures:

- Students will review the names of the basic shapes of triangle, square, rectangle.
- Students will be given copies of a Tom Benson Hall of Fame Stadium photo.
- Students will each have a red, blue, green and orange color pencils.
- Students will circle the triangles red, the squares blue, the rectangles green and the circles orange.
- Students will share what they find and see who finds the most shapes.
- The lesson can include parallelograms, trapezoids and / or three-dimensional shapes such as spheres, cubes, pyramids and cones.
- Students can design their own stadiums and include a given list of shapes.

Materials:

- Models of shapes
- Photo of the Tom Benson Hall of Fame Stadium (MA44)
- Color pencils

Assessment:

- The assessment is an informal observation.
- The completed photo page with the correct colors can be assigned a grade.

Pro Football Hall of Fame Stadium - Geometry

Name

\qquad
Look at the picture below of the Pro Football Hall of Fame Stadium. You will notice there are many shapes throughout the photo. Use a red pencil to circle the triangles. Use a blue pencil to circle the squares blue. Use a green pencil to circle the rectangles green. Use an orange pencil to circle the circles.

How many shapes did you find?

Triangles

\qquad Squares \qquad

Rectangles

\qquad Circles \qquad

Nalitulir Miscellaneous Math Activities

Teachers: The following are classroom mathematics activities for you and your students to enjoy. Feel free to adapt and make copies of these ideas to suit your classroom.

NERF FOOTBALL: Use a Nerf football to provide math practice. With a permanent marker draw puzzle pieces all over the ball and number each piece. When the student catches the football, they either add or multiply the numbers found under their fingers. You can be "all thumbs" and still enjoy!

WEEKLY ANALYZING: Assign each student a team or a player and have them keep track of their weekly statistics. Give weekly math problems to the students in order to practice various mathematics skills. Students can keep a journal of their findings to compare with their classmates' findings.

FIELD FACTS: Take a trip to a football field. Have the students practice using rulers, measuring tapes, and compasses by giving assignments related to the field. How far is the end zone from the goal post? How many inches is the entire field? How many yards across is a field? You could even have the students play a game of catch - how far can they throw? Who can catch the farthest throw?

FOOTBALL FOLDER GAME: Using the inside of a file folder, draw the outlines of 10 footballs and then write a different number inside each one. Laminate the folder. Draw matching football shapes on poster board, add corresponding number of dots, laminate and cut out. To play, the student counts the number of dots on the football and places it on top of the matching numbered footballs on the file folder. You could also use this for multiplication and subtraction by adapting the numbers.

ROMAN NUMERAL FUN: Super Bowls are numbered by Roman numerals. Make a list of Roman numerals from one to fifty. Multiply each number on your list by ten and write the products in Roman numerals.

> The Hall of Fame welcomes any suggestions for classroom activities. Please share your thoughts and ideas by contacting the Educational Programs Staff at (330) 456-8207 or e-mail at Education@ProFootballHOF.com.

How Far is 300 Yards?

Jason Tucker - 993 feet, 11,916 inches Jermaine Lewis -924 feet, 11,088 inches Jacoby Ford - 987 feet, 11,844 inches Glyn Milburn - 1,212 feet, 14,544 inches Tyrone Hughes - 1,041 feet, 12,492 inches John Taylor - 963 feet, 11,556 inches Willie Anderson - 1,008 feet, 12,096 inches

Joshua Cribbs - 948 feet, 11,376 inches Stephone Paige - 927 feet, 11,124 inches Lionel James - 1,035 feet, 12,420 inches Adrian Peterson - 1,083 feet, 12,996 inches Walter Payton - 900 feet, 10,800 inches Darren Sproles - 951 feet, 11,412 inches Steve Smith - 939 feet, 11,268 inches Calvin Johnson - 987 feet, 11,844 inches LeGarrette Blount - 1,002 feet, 12,024 inches Tavon Austin - 942 feet, 11,304 inches Tim Brown - 909 feet, 10,908 inches Jim Brown - 939 feet -11,268 inches Gale Sayers - 1,017 feet, 12,204 inches

Number Patterns

A. 12 Yards
B. 20 Yards
C. 12 Yards
D. 52 Yards

Questions: +3 / +5 / +4 / +12
E. 15 Yards
F. 19.5 Yards
G. 13.7 Yards
H. 49.4 Yards

Questions: +3.5 / +7.3 / +1.7 / +10.4

Using Variables With NFL Scorers

1. $(599 * 3)+x+2=2,673$	$x=874$
2. $(565 * 3)+x=2,544$	$x=849$
3. $(820 * 1)+(0 * 6)+(3 * x)=2,434$	$x=538$
4. $(3 * x)+655=2,150$	$x=495$
5. $(478 * 3)+628=x$	$x=2,062$
6. $(471 * 3)+x=2,004$	$x=591$
7. $(9 * 6)+(335 * 3)+x=2,002$	$x=943$
8. $(3 * x)+675=1,983$	$x=436$
9. $(461 * 3)+x=1,970$	$x=587$
10. $(3 * x)+605=1,913$	$x=436$

What's in a Number?

\#8: Factors: 1, 2, 4, 8 / Composite Multiples: 8,16, 24,32, 40, etc.
\#61: Factors: $1 \& 61$ / Prime Multiples: 61, 122, 183, 244, 305, etc.
\#53: Factors: 1 \& 53 / Prime Multiples: 53, 106, 159, 212, 265, etc.

MIITMAITH Answer Key

\#75: Factors: 1, 3, 5, 15, 25, 75 / Composite Multiples: 75, 150, 225, 300, 375, etc.
\#81: Factors: 1, 3, 9, 27, 81 / Composite Multiples: 81, 162, 243, 324, 405, etc.
\#37: Factors: 1 \& 37 / Prime Multiples: 37, 74, 111, 148, 185, etc.
\#63: Factors: 1, 3, 7, 9, 21, 63 / Composite Multiples: 63, 126, 189, 252, 315, etc.
\#60: Factors: $1,2,3,4,5,6,10,12,15,20,30,60$ / Composite / Multiples: 60, 120, 180, etc.

A Day At The Game

1. $\$ 372.00$
2. 60 minutes, 3,600 seconds
3. 42 players
4. 1,367 empty seats
5. 312 ounces, 19.5 pounds
6. 3,200 programs
7. \$ 89.95
8. $\$ 45.50$
9. 3 hours, 39 minutes
10. 58,500 fans
11. 74 points
12. Opposing team's 29-yard line
13. 18 to 16
14. 70 yards
15. $\$ 62.55$
16. $5,3331 / 3$ square yards or 48,000 square feet
17. $\$ 14,040$
18. $\$ 479$
19. Four years
20. 17
21. 7:12 PM
22. $0: 34.12$ or 34.12 seconds
23. 198 minutes
24. 10,091
25. 30 yards (the fair catch does not count against him, thus, total yards is divided by 4 instead of 5)
26. 20\%
27. 90 yards
28. 80\%
29. 13.64 yards per carry
30. 1'5 7/8"

How Old are They?

Dan Marino: John Elway:
Step 1 - 44,703 Step 1 - 10,295
Step 2 - 16,658 Step 2 - 10,657
Step 3-196 Step 3-362
Step 4-438 Step 4-296
Step 5-18 Step 5-297
Step 6-31 Step 6-60
Step 7-44
Step 8-59

Conversions in Football

1. 45,807 feet
2. 3,924 inches
3. 34.9 miles
4. 5,841 feet
5. 34 yard line of opposing team
6. 1,944 inches, 4,937.76 centimeters
7. 300 feet long, 160 feet wide
8. 6,080 ounces
9. 1,020 minutes
10. 112 officials

Super Bowl Numbers

15, 14, 9
23, 26, 18
35, 32, 37
LVII

Super Bowl Thunder

1. Andrew Whitworth (40)
2. 10
3. 5
4. 4
5. 3
6. Matt Orzech
7. TIE: A'Sahwn Robinson, A. Whitworth (330 lbs .)
8. Dont'e Deayon (159 lbs.)
9. Punter
10. 855 lbs .
(CONTINUES NEXT PAGE)
```
0Z Suexə\perp - 6I SII!马 :ZI6I
9I SUCXə\perp - LI S|I!g :606I
8I Suexə\perp - IZ S|!!马:ち06I
ZZ SUCXə\perp - 9Z S|I!Q :Z68I
                                    :МО吗 ӘӘS '乙
N_е^ |!!M SдəMsu* '\tau
moysks bulnojs
```

でLIL＇も LOL＇ε LOI＇SD人＇て Lt＇I पमएन 8M 7ヨN

6＂てもエ「亡 「も七9て＇I ‘ ε

6とて＇I＇
s50W Kpuey

エナ゙も 「
sqduәみユ 69ヶ‘91＇t
spıe人 七0＜＇حL＇＇
 ع0＇s－иоұмәN யeว＇โ

EO＇S uOZMəN meう

$\angle I ' t$ Кәןию ppoı
9โ＇t III uopıo૭ u！ィ｜əW

6t＇t щeлбui yıew
Ot＇t uOS」əみəd Uе！」p \forall
s．JoपShy doI

